

Available online at www.sciencedirect.com

Journal of Molecular Catalysis A: Chemical 263 (2007) 212-215

www.elsevier.com/locate/molcata

Amberlyst-15: An efficient reusable heterogeneous catalyst for aza-Michael reactions under solvent-free conditions☆

Short communication

Biswanath Das*, Nikhil Chowdhury

Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad 500007, India Received 18 July 2006; received in revised form 23 August 2006; accepted 29 August 2006 Available online 3 September 2006

Abstract

The aza-Michael reactions of amines with α , β -unsaturated carbonyl and nitrile compounds have efficiently been carried out at room temperature using Amberlyst-15 as a heterogeneous reusable catalyst. The products were formed in short reaction times and in high yields. © 2006 Elsevier B.V. All rights reserved.

Keywords: Aza-Michael reaction; Amine; α,β-Unsaturated carbonyl and nitrile compounds; Amberlyst-15; Heterogeneous reusable catalyst

The aza-Michael reaction involving the conjugate addition of a nitrogen nucleophiles to an α,β -unsaturated carbonyl or nitrile compounds constitutes an important reaction in organic synthesis for the construction of C-N bond and for the preparation of a β -amino carbonyl or nitrile compounds [1]. Various β-amino carbonyl compounds are present in bioactive natural products and are also useful for the synthesis of fine chemicals and pharmaceuticals [2]. The aza-Michael reactions are usually carried out under acid and base catalysis [3]. However, to avoid the problems associated with a strong acid or a base which may initiate the side reactions, various Lewis acids have been introduced [4]. Many of these Lewis acid induce several drawbacks, such as Yb(OTf)₃ [4a] and CeCl₃·7H₂O–NaI [4c] require drastic reaction conditions and toxic solvent, MeCN, CeCl₃·7H₂O–NaI [4c] is used in large excess and InCl₃ [4b] and Cu-salt [4f] complete the conversion in long reaction times. As the aza-Michael reaction is of versatile use in organic synthesis a mild, facile and eco-friendly protocol for this reaction is highly essential. In continuation of our work [5] on the application of Amberlyst-15 for development of useful synthetic methodologies we recently observed that it can catalyse efficiently the aza-Michael reactions of amines with α , β -unsaturated carbonyl and nitrile compounds at room temperature (Scheme 1). The reaction was conducted under solvent-free conditions. Initially, the reaction was attempted with different solvents (Table 1) but the yields were found to be better in absence of any solvent.

A series of β -amino carbonyl and nitrile compounds were prepared by direct treatment of amines with α,β -unsaturated carbonyl and nitrile compounds in the presence of Amberlyst-15 (Table 2). Both the primary and secondary aliphatic amines underwent the conversion smoothly. Primary amines, such as benzyl amine, phenylethyl amine or *n*-butyl amine reacted with an α,β -unsaturated carbonyl and nitrile compound to form only the corresponding mono-alkylated product. The method worked well for α,β -unsaturated esters, nitriles and ketons (acyclic or cyclic). The reaction was completed within 10-30 min. The vields of the products were high (76-98%) with aliphatic amines. However, when an aromatic amine, such as aniline, was treated with an α,β -unsaturated ester or nitrile the yield of the adduct was low (\sim 30% in 2h) but the similar reaction with methyl vinyl ketone afforded the desired product in impressive yield (92% in 1 h). This difference in reactivity of aromatic amines with α,β -unsaturated esters or nitriles shows the chemoselectivity of conjugate addition of aliphatic amines in the present method.

Thus, when a mixture (1:1) of morpholine and aniline was treated with an excess methyl acrylate in the presence of

[☆] Part 104 in the series, "studies on novel synthetic methodologies" (IICT Communication No.060922).

Corresponding author. Tel.: +91 40 27160512; fax: +91 40 27160512.
 E-mail address: biswanathdas@yahoo.com (B. Das).

^{1381-1169/\$ -} see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2006.08.082

Amberlyst-15, only the morpholine adduct was formed as the sole product (Scheme 2).

The catalyst, Amberlyst-15, is commercially available, inexpensive and non-hazardous. It works under heterogeneous conditions and can easily be handled and removed by simple filtration. The recovered catalyst was recycled consecutively three times to produce the desired products with a little variation of their yields (Table 2).

In conclusion, we have developed an efficient general methodology for the preparation of β -amino carbonyl and nitrile compounds by applying aza-Michael reactions of amines and

Table 1

Conjugate addition of morpholine and methyl acrylate under different reaction conditions^a

Entry	Solvent	Isolated yield (%)
1	DCM	59
2	CH ₃ CN	62
3	THF	42
4	DMF	38
5	EtOH	41
6	Solvent free	79, 76, 74, 71 ^b

^a Reaction conditions: morpholine (2 mmol) and methyl acrylate (2.5 mmol); solvent (2 mL) or without any solvent; Amberlyst-15 dry (30%, w/w); r, t; 30 min.

^b Catalyst was used over four runs.

 α , β -unsaturated carbonyl and nitrile compounds in the presence of Amberlyst-15. The simple experimental procedure, application of an inexpensive heterogeneous recyclable catalyst, solvent-free reaction conditions, short reaction times and high yields are the notable advantages of the protocol.

Table 2

Conjugate addition of amines to α , β -unsaturated carbonyl and nitrile compounds catalysed by Amberlyst-15 under solvent-free condition^a

Entry	Amine	α,β -Unsaturated compound	Time (min)	Isolated yield (%)
1	NH	OMe	25	94
2	NH	OMe	30	87
3	0NH	OMe	30	79
4	PhCH ₂ NH ₂	OMe	30	90
5	PhCH ₂ CH ₂ NH ₂	OMe	30	87
6	n-BuNH ₂	OMe	25	88
7	Ph—N_NH	OMe	30	93
8	NH	CN	10	96
9	O ₂ N-	CN	30	86

Table 2 (Continued)

Entry	Amine	α , β -Unsaturated compound	Time (min)	Isolated yield (%)
10	0NH	CN	20	98
11	PhCH ₂ NH ₂	CN	15	92
12	PhCH ₂ CH ₂ NH ₂	CN	15	93
13	<i>n</i> -BuNH ₂	CN	15	95
14	NH		25	77
15	оNн	0	25	89
16	Me—N_NH	0	30	91
17	NH ₂ NH	0	30	78
18	PhNH ₂		60	92
19	0 NH	o L	30	76
20	NH		30	81

^a The structures of the products were settled from the spectral (IR, ¹H NMR and MS) data.

1. Experimental

1.1. Typical experimental procedure

To a mixture of methyl acrylate (2.5 mmol) and Amberlyst-15 (65 mg, 30%, w/w) was added morpholine (2 mmol) and stirred at room temperature for 30 min. TLC indicated the completion of the reaction. CH_2Cl_2 (10 mL) was added and the catalyst was separated by filtration. The solvent was evaporated from the filtrate and the residue was subjected to column chromatography (silica gel, hexane-EtOAc) to obtain pure product (79%).

The recovered catalyst was recycled for consecutive three times for the above reaction to furnish the product with a little variation of its yield (Table 1).

Acknowledgement

The authors thank CSIR, New Delhi for financial assistance.

References

 P. Perlmutter, Conjugate Addition Reaction in Organic Synthesis, Pergamon Press, Oxford, 1992, p. 114.

- [2] (a) K. Hattori, M. Miyata, H. Yamamoto, J. Am. Chem. Soc. 115 (1993) 1151;
 - (b) D.E. Cole, Tetrahedron 50 (1994) 9517;
 - (c) G. Cardillo, C. Tomasini, Chem. Soc. Rev. (1996) 117;
 - (d) S. Abele, D. Seebach, Eur. J. Org. Chem. (2000) 1;
 - (e) M. Liu, M.P. Sibi, Tetrahedron 58 (2002) 7991.
- [3] (a) S.G. Davies, T.D. McCarthy, Synlett (1995) 700;
 (b) J.C. Adrain, M.L. Snapper, J. Org. Chem. 68 (2003) 2143.
- [4] (a) G. Jenner, Tetrahedron Lett. 36 (1995) 233;
 (b) T.P. Loh, L.-L. Wei, Synlett (1998) 975;
 (c) G. Bartoli, M. Bosco, E. Marcantoni, M. Petrini, L. Sanbri, E. Torregiani, J. Org. Chem. 66 (2001) 9052;
 (d) N. Srivastava, B.K. Banik, J. Org. Chem. 68 (2003) 2109;
 (e) R. Varala, M.M. Alam, S.R. Adapa, Synlett (2003) 720;
 (f) L.-W. Xu, J.-W. Li, C.-G. Xia, S.-L. Zhou, X.-X. Hu, Synlett (2003) 2425;
 (g) L.-W. Xu, L. Li, C.-G. Xia, Helv. Chim. Acta 87 (2004) 1522;
 (h) N. Azizi, M.R. Saidi, Tetrahedron 60 (2004) 383;
 (i) M.M. Hashemi, B. Eftekhari-Sis, A. Abdollahifar, B. Khalili, Tetrahedron 62 (2006) 672.
 [5] (a) B. Das, J. Banerjee, R. Ramu, R. Pal, N. Ravindranath, C. Ramesh, Tetrahedron Lett. 44 (2003) 5465;
 - (b) B. Das, J. Banerjee, Chem. Lett. 33 (2004) 960;
 - (c) B. Das, M.R. Reddy, H. Holla, R. Ramu, K. Venkatesharlu, J. Chem. Res. (S) (2005) 793;
 - (d) B. Das, P. Thirupathi, I. Mahender, V.S. Reddy, Y.K. Rao, J. Mol. Catal. A: Chem. 247 (2006) 233.